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Abstract

This paper describes an improved error diffusion a
rithm for the purpose of digitally halftoning images.
one variation of the algorithm an error signal is cal
lated by the difference between a visually perceived
put value and a visually perceived output value. Thi
accomplished by applying a causal visual blur func
to both the input and output images. This approach
the advantage that it minimizes the appearance of w
artifacts in the output image while simultaneously eli
nating the edge artifacts associated with a previou
sual error diffusion algorithm. In a second variation
the improved error diffusion algorithm, a local ima
activity detector is used to adaptively modify the in
and output blur filters. This allows the error diffusi
parameters to be optimized for different types of im
content.

Keywords: digital halftoning, error diffusion, visua
modeling

1 Introduction

Digital halftoning is a digital image processing techniq
used to produce a halftone output image from a cont
ous-tone input image.1  A continuous-tone image is typ
cally represented as a set of discrete pixel values r
ing from 0 to 255. To reproduce this image on an ou
device capable of printing dots of one tone level (e
black) it is necessary to create the sensation of inte
diate tone levels by suitably distributing the printed d
in the output image. This is accomplished by conver
the continuous-tone image to a binary output image
ing some form of halftoning algorithm.

One type of digital halftoning is known as error d
fusion. Figure 1 shows a block diagram describing a b
error diffusion algorithm developed by Floyd a
Steinberg.2  The continuous-tone input value for colum
i , and row j of the input image is given by yi,j. For pur-
poses of illustration it will be assumed that the conti
ous-tone input values span the range from 0 to 255.
continuous-tone input value for the current input pi
is thresholded to form the output value bi,j. The thresh-
old operator will return a 0 for any continuous-tone 
ecent Progress in Digital Halftoning II
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put value below the threshold, and a 255 for any c
tinuous-tone input value above the threshold. A diff
ence signal is computed between the continuous-
input value and the output value, representing the e
introduced by the thresholding process. The differe
signal is multiplied by a series of error weights, Wi,j, and
is added to the continuous-tone input values of nea
pixels that have yet to be processed to form modi
continuous-tone input values. The propagation of 
errors made during the quantization process to the ne
pixels ensures that the mean of the transformed p
values is preserved over a local image region. Figu
illustrates the error weights use by Floyd and Steinb
to distribute the errors to the nearby pixels. Figur
shows an image generated using this simple error d
sion algorithm, together with the corresponding conti
ous-tone original.

+ Threshold

yi,j

Weight Error, Wi,j

b i,j

Figure 1. Basic Floyd-Steinberg error diffusion algorithm
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Figure 2. Error weights for Floyd-Steinberg error diffusio
algorithm.
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Figure 3. (a) Original image, and (b) sample image genera
with basic error diffusion.

An artifact that is typically associated with err
diffusion halftoning algorithms is known as “worms
Worms are formed when the black or white output p
els appear to string together in an area that shoul
otherwise uniform. Worm artifacts can be clearly se
in the light and dark ends in the gray wedge along
top of Fig. 3. Other objectionable artifacts include 
near-periodic patterns that are found at some of the
termediate gray levels. Many modifications to the ba
error diffusion algorithm have been proposed to atte
to eliminate these artifacts and improve the overall q
ity.3–12 These algorithms vary greatly in their comple
ity, as well as in the associated image quality.

One particular variation of the basic error diffusi
algorithm that is relevant to the present work has b
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described by Sullivan et al.13  This method will be re-
ferred to as visual error diffusion. The fundamental c
cept incorporated into this algorithm is that the error s
nal is computed relative to the tone value that would
observed by the human visual system, rather than
tone value for a single pixel. With this approach, a b
filter derived from the response of the human visual s
tem is used to compute a visually perceived output va
The output level is chosen that gives the smallest e
between the continuous-tone input value and the v
ally perceived output value. Likewise, the correspo
ing error signal that is propagated to the nearby im
pixels is computed by taking the difference between
continuous-tone input value and the visually perceiv
output value rather than the output pixel value itself

Figure 4 illustrates a flow diagram for the visu
error diffusion method. The simple threshold in conve
tional error diffusion has been replaced by a selec
criterion that is used to determine the output pixel va
bi,j. The selection is made by using a causal visual 
function, vi,j, to blur the previously computed output pix
values together with each of the possible output lev
for the current pixel to compute a set of visually p
ceived output values. For a binary output device th
will be two possible output levels corresponding to
black or a white pixel. For multilevel output devices
visually perceived output value is computed for each
the possible output levels. The output pixel value is c
sen that gives the smallest difference between the 
tinuous-tone input value and the visually perceived o
put value. The error signal is given by the difference 
sociated with the chosen output level. As with the c
ventional error diffusion algorithm, this error is the
weighted by a series of error weights Wi,j, and is added
to the continuous-tone input values of nearby pix
which have yet to be processed.

+ Selector

yi,j b i,j

Filter, Vi,j

Filter, Vi,j

Possible 
Output 
Levels

Weight Error, Wi,j

Figure 4. Visual error diffusion algorithm.

The causal visual blur function used in this meth
is computed from the frequency response of the hum
visual system. An example of a 4× 7 causal visual blur
function is shown in Fig. 5. The indicated array elem
is used to weight the possible output levels for the c
rent pixel, and the remaining array elements are use
pter II—Digital Halftoning and the Human Visual System—59
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weight the nearby output values which have been pr
ously computed. (This causal visual blur function i
normalized version of the one described by Sullivaet
al.14 ) A similar 8× 15 causal visual blur function 
shown in Fig. 6. The size of the causal visual blur fu
tion array is related to parameters, such as viewing
tance and sample spacing on the document, in the e
tions given by Sullivan. Figure 7 shows a sample im
generated using this algorithm with the 8× 15 causa
visual blur function. Note that the appearance of 
worm artifacts is substantially reduced relative to the c
ventional error diffusion image shown in Fig. 3. Also
can be seen that the algorihm suppresses many o
near-periodic patterns at the intermediate gray leve
is believed that the basic reason for the improveme
these artifacts can be traced to the fact that the vis
percieved output values are computed based on a 
tively large region of influence. Therefore, the algorit
will be less sensitive to the errors made in the neigh
ing pixels, and will therefore be less likely to get int
“ringing” type mode where a placing a black dot crea
a large error which must be corrected by placing a w
dot in the next pixel, and so on.

  -0.009  -0.010 0.004 0.021 0.004 -0.010  -0.00

 -0.010  -0.018 0.007 0.051 0.007 -0.018 -0.01

 0.004 0.007 0.079 0.190 0.079 0.007  0.00

 0.021 0.051 0.190 0.368

current pixel

Figure 5. Example of a 4× 7 causal visual blur filter used fo

visual error diffusion.

ck-

 -0.002

 -0.002

 -0.002

 -0.002

 -0.001

0.000

0.002
Figure 6.  Example of a 8× 15 causal visual blur filter used for visual error diffusion.

 -0.002 -0.002 -0.002 -0.002 -0.001 0.000 0.002 0.003 0.002 0.000 -0.001 -0.002 -0.002 -0.002

-0.002 -0.003 -0.003 -0.003 -0.002 0.001 0.004 0.006 0.004 0.001 -0.002 -0.003 -0.003 -0.003

-0.002 -0.003 -0.004 -0.005 -0.003 0.001 0.007 0.010 0.007 0.001 -0.003 -0.005 -0.004 -0.003

-0.002 -0.003 -0.005 -0.005 -0.004 0.002 0.011 0.017 0.011 0.002 -0.004 -0.005 -0.005 -0.003

-0.001 -0.002 -0.003 -0.004 -0.002 0.007 0.022 0.031 0.022 0.007 -0.002 -0.004 -0.003 -0.002

0.000 0.001 0.001 0.002 0.007 0.020 0.043 0.057 0.043 0.020 0.007 0.002 0.001 0.001 

0.002 0.004 0.007 0.011 0.022 0.043 0.076 0.096 0.076 0.043 0.022 0.011 0.007 0.004 

0.003 0.005 0.010 0.017 0.031 0.057 0.096 0.118

current pixel
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Although the visual error diffusion algorithm has t
result of reducing the appearance of artifacts to a la
degree without the introduction of undesirable nois
side effect of this method is that artifacts are gener
near edges, lines, and isolated pixels in the image
though these artifacts do have a sharpening effect o
halftoned image, it is not necessarily a desirable ef
because the degree of sharpening can not be contr
independent of the artifact reduction, and additiona
the effect is anisotropic so that the apparent sharpe
is not symmetric. As a result, different amounts of sha
ness will be observed on an edge going from dark g
to light gray, as opposed to one going from light gray
dark grey. Additionally ghost pixels may be formed n
high-contrast edges. These artifacts can be obse
around the circles and the other edges in the image sh
in Fig. 7.

The origin of these artifacts can be traced to the 
that Sullivan et al. did not blur the input image as we
as the output image. The selection process, therefo
comparing the visually perceived output image to 
unblurred input image. For example, consider the c
where the input image contains an isolated black p
on a white background. The algorithm will place wh
pixels in most of the area corresponding to the w
background, but when it comes time to make a selec
for the black pixel it will compute visually perceive
output values by convolving the output pixels in the s
rounding area. Since most of these pixels will be wh
the visually perceived output level for a white outp
value will be white, but the visually perceived outp
value for a black output pixel will be light gray rath
than black. Because the light gray visually percei
output level will be closer to the desired black input le
than the white visually perceived output level, the c
rect black output level will be chosen. However, the
sulting error signal corresponding to the difference 
tween the black input level and the light gray visua
perceived output level will be quite large. This error w
then be propagated to the surrounding continuous-
input pixels. As a result, when the nearby white ba
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ground pixels are processed, one or more of these p
may be rendered as black output pixels. The artif
can be even more severe on edges between uni
patches of different gray levels where anisotropic ov
shoots are formed.

Figure 7. Sample image generated using visual error diffusi

The new error diffusion algorithms that will be d
scribed here eliminate these artifacts while simu
neously maintaining the benefits associated with the
sual error diffusion algorithm.

2 Visual Error Diffusion With Input Blur

As was noted above, the source of many of the artif
that are associated with the visual error diffusion al
rithm lies in the fact that the error is computed by co
paring the visually perceived output value to the 
blurred input value. This suggests that these artif
could be reduced by applying the same causal visual
filter to the continuous-tone input pixels that is appl
to the halftoned output pixels. As a result, the visua
perceived output pixel values will be compared to 
visually perceived input pixel values rather than the
put pixel values themselves during the output pixel
lection step and the error calculation step as is sh
schematically in Fig. 8. This method is identical to 
method of Sullivan et al. shown in Fig. 4, with the ex
ception that the causal visual blur filter Vi,j is also ap-
plied to the continuous-tone input pixels to compute
sually perceived input values. The selection of the o
put pixel value is done by using the same causal vi
blur function to blur the previously computed outp
pixel values along with each of the possible output l
els for the current pixel to compute the visually percei
output value. For a binary output device there will 
two possible output levels corresponding to a black 
white pixel, but this method can be extended to mu
level output devices by considering more than two p
sible output levels. The output pixel value is chosen 
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gives the smallest error between the visually perce
continuous-tone input value and the visually percei
output value. The resulting error is then calculated
the current pixel by finding the difference between 
visually perceived continuous-tone input value and 
visually perceived output value for the selected out
level. This error is then multiplied by a series of er
weights, Wi,j, and is added to the visually blurred co
tinuous-tone input values of nearby pixels which h
yet to be processed.

+ Selector

yi,j b i,j

Filter, Vi,j

Filter, Vi,j

Possible 
Output 
Levels

Filter, Vi,j

Weight Error, Wi,j

Figure 8. Visual error diffusion algorithm using input blur

Figure 9. Sample image generated using visual error di
sion algorithm with input blur.

The result of visually blurring the continuous-to
input values as well as the output values is that the
culated errors will now represent the true visually p
ceived difference between the input image and the 
put image. This eliminates the anisotropic sharpen
artifact as well as the ghost pixels associated with Sulliv
visual error diffusion algorithm. Figure 9 shows a sam
image generated using this approach. The 8× 15 causal
pter II—Digital Halftoning and the Human Visual System—61
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visual blur function shown in Fig. 6 was used to vis
ally blur both the input and output pixels. It can be s
that the worms found in the conventional error diffus
have been eliminated as they were with Sullivan’s
sual error diffusion, but that the edge artifacts ass
ated with that algorithm have been eliminated.

Although the anisotropic sharpening effect cau
by the Sullivan et al. visual error diffusion algorithm is
undesirable in many respects, it does have the effe
increasing the overall image sharpness which can 
positive attribute in many cases. The use of this n
method eliminates most of this sharpening effect. A
result, an image generated with the input visual blur 
be preferable from an artifact standpoint, but may 
pear quite soft relative to an image generated with
original visual error diffusion technique. This can 
compensated for by applying a sharpening filter to 
continuous-tone input image prior to the application
the improved visual error diffusion algorithm, as sho
in Fig. 10. This algorithm is identical to that shown
Fig. 8 with the exception that a sharpening step is
plied to the continuous-tone input pixels before the 
plication of the visual blur operation. One advantage
applying the sharpening as a separate step, rather
simply using Sullivan’s algorithm, is that the amount
sharpening can be easily controlled by adjusting 
sharpening coefficients, and additionally the sharpen
can be made to be more isotropic. The sharpening f
can be implemented as a simple convolution, or us
other known techniques such as un-sharp maskin
typical 3× 3 sharpening filter that can be used for t
purpose is shown in Fig. 11. Because both the shar
ing step and the visual blurring of the input signal 
sequential convolution operations that are applied to
continuous-tone input pixels, they can be combined 
a single convolution operation where the convolut
kernel is formed by the convolution of the sharpen
filter with the visual blur filter.

+

yi,j b i,j

Filter, Vi,j

Filter, Vi,j

Possible 
Output 
Levels

Filter, Vi,jSharpen Selector

Weight Error, Wi,j

Figure 10. Visual error diffusion algorithm with input blu
and pre-sharpening.

Figure 12 shows a sample image generated u
the method of Fig. 10 with the sharpening kernel of F
11. It can be seen that the improved algorithm introdu
a desirable amount of sharpening and eliminates the
jority of the ghost pixel and anisotropic sharpening a
facts associated with the visual error diffusion algorith
while maintaining the benefits of the worm reduction
should be noted that performing the convolution of 
62—Recent Progress in Digital Halftoning II
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visual blur filter with the input values is significant
more costly from a computational point of view than 
convolution with the output values. This is due to 
fact that the output values will generally be binary, a
therefore, the covolution basically reduces to simpl
series of add operations. This may be the main rea
that the original Sullivan et al. algorithm did not include
the input blur step. This drawback is addressed in
next section where it is shown that an adaptive algori
can be used to produce superiour results, while m
mizing the need to use an input blur filter.

 -0.197 -0.373 -0.197

 -0.373 3.28 -0.373

 -0.197 -0.373 -0.197

Figure 11. Sample 3× 3 sharpening filter.

Figure 12. Sample image generated using method of Fig

3 Adaptive Visual Error Diffusion

While the improved algorithm described in the last s
tion produces a higher quality output than the ear
methods, it does introduce undesirable noise into 
tain areas of the image that are high in contrast and
tial frequency. For example, consider the vertical a
horizontal bars near the center right of the sample
age of Fig. 12. This noise results from the fact that
visual blur filter makes it impossible for the algorith
to distinguish the high-frequency bars and a uniform g
patch. Ideally, it is desirable to combine the performa
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of the simple error diffusion algorithm of Fig. 1 in are
of the image that contain high spatial frequency c
tent, with that of the improved error diffusion algorith
shown in Fig. 10 in areas of the image that are smoo
varying. A new error diffusion algorithm will now b
described that uses a local activity detector to com
these two approaches in a locally adaptive fashio
take advantage of the best features of each approa

This adaptive visual error diffusion algorithm 
shown schematically in Fig. 13. To process an input p
y(i,j ) located in row i, column j of the input image, a
activity detector is first used to determine the natur
the image content in the surrounding pixel neighborho
In general, the activity detector may take many for
including a local range detector, local variance esti
tor, convolution filter, or edge detection operator s
as a Sobel or Prewitt edge detection filter.15  An activity
detector using a local range detector would compute
activity signal as the difference between the maxim
and minimum input pixel values of neighboring pix
in the vicinity of y(i,j ). The neighboring pixels may in
clude the current pixel, adjacent pixels, and/or ot
nearby pixels. An activity detector using a local va
ance estimator would compute the activity signal as
statistical variance of the input pixel values for nei
boring pixels in the vicinity of y(i,j ). An activity detec-
tor using a convolution filter would compute the act
ity signal as the convolution of an edge detection c
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volution filter and the input pixel values of neighbori
pixels in the vicinity of y(i,j ). An activity detector using
an edge detection operator would compute the acti
signal as the sum of convolutions of the input pixels
neighboring pixels in the vicinity of y(i,j ) with the edge
detection filters. Of these options, it has been found 
the local range activity detector produces good res
and is relatively efficient to compute. This form of t
activity detector will be used for the examples given
the remainder of this report.

The value of the activity signal is used as an in
to an activity function that computes a weighting vec
Q = {q0, q1, ..., qk, ..., qN-1} that is used to specify th
amount of weight to be applied to each of a set oN
different error diffusion algorithms. Typically, the a
tivity function would be implemented as a lookup ta
that is indexed by the activity signal. In its simplest for
the activity function can be used to switch between 
different algorithms. An example of such an activ
function is shown in Fig. 14, where S is the value of the
activity signal. In this particular example, the value
the activity signal ranges from 0 to 255. For values
the activity signal between 0 and 10, Q = {1,0}, and
therefore the first algorithm will be used. Likewise, f
values of the activity signal between 10 and 255, Q =
{0,1}, so that the second algorithm will be used. In t
way, the processing is locally switched between the 
algorithms based on the value of the activity signal. T
Figure 13.  Adaptive visual error diffusion algorithm.

b0(i,j)

Selector

Activity
Function

Activity
Detector

+

-
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Output
Levels
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Distributor
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concept can be generalized so that a different algor
is selected for each of N types of local scene conten
the input image as discriminated by the activity det
tor. Additionally, the results can be blended in regio
of the image where it is unclear exactly what type
scene content is present. An example of an activity fu
tion that will accomplish this is shown in Fig. 15.

S

Q = {1,0} Q = {0,1}

10 255

Figure 14. Example activity function to switch between 
error diffusion algorithms.

S 255

q
1 2q N-1q0

q

Figure 15. Example activity function to blend N different 
ror diffusion algorithms.

The input image is also processed through an in
filter processor, which digitally filters the input imag
in the vicinity of y(i,j ) using a bank of N separate filters
F0(i,j ) through FN–1(i,j ) and combines the results. TheN
filtered input images are then weighted using the co
sponding coefficients of the weighting vector Q and are
added together to produce a weighted filtered input 
nal z(i,j ),

  z i j q y i j F i jk k
k

N

, , * ,( ) = ( ) ( ){ }
=

−

∑
0

1

, (1)

where k is the filter number, and ∗ is the convolution
operator. It should be noted that the filtered input val
only need to be computed for cases where the weighqk

are non-zero.
For uniform regions of the input image, it is des

able that the average value of z(i,j ) be equal to the aver
age value of y(i,j). One way of satisfying this mean pr
serving relationship is to use filters F0(i,j) through FN–1(i,j )
that are normalized (i.e., that satisfy ΣiΣj Fk(i,j ) = 1), and
impose the constraint that Q satisfies Σqk = 1.

After the weighted filtered input signal z(i,j ) is com-
puted, the errors made by processing previous pixel
weighted by the error weights W(i,j ) shown in Fig. 2 and
by the weighting vector Q using a weighted error gen
64—Recent Progress in Digital Halftoning II
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erator. During this step, the error values stored in N sepa-
rate error buffers b0(i,j ) through bN–1(i,j ), corresponding
to the N types of local scene content, are individua
weighted by the spatial diffusion function W(i,j ), then
the resulting values are weighted by the weighting v
tor Q, and added together to produce an error signal e(i,j )

e i j q W i j b i jk k
k

N

, , * ,( ) = ( ) ( ){ }
=

−

∑
0

1

, (2)

where a convolution notation has been used to repre
the operation of weighting the error buffer with the s
tial diffusion function. In this way, the errors genera
in areas of the image that contain one type of scene 
tent will not propagate to an area of the image that c
tains a different type of scene content. This type of se
rate error buffering is desirable to avoid artifacts t
can be generated when the image contains a sharp b
ary between areas of different scene content.

The error signal e(i,j ) is then added to the weighte
input signal z(i,j ) to compute the desired signal d(i,j ).

d(i, j) = z(i, j) + e(i, j) (3)

An output filter processor computes a set ofM
weighted filtered output values p0 through pM-1. In this
step, the previously computed output values o(i,j ) are
convolved together with each of the M possible output
levels for the current pixel (l0 through lM–1) using the bank
of N filters G0(i,j ) through GN-1(i,j ) to compute filtered
output values. The filtered output values only need to
computed for cases where the weights qk are non-zero. Fo
each of the M possible output levels, the filtered outp
values corresponding to the N filters are weighted by
the weighting vector Q, and added together to genera
a set of weighted filtered output values p0 through pM-1,

P q o i j G i jm k m k
k

N

= ( ) ( ){ }
=

−

∑ , * ,
0

1

, (4)

where om(i,j ) is the output image that would be form
if the output level lm were used for the current pixel.

After the weighted filtered output values have be
computed, the selector shown in Fig. 13 chooses
output levels (l0 through lM-1) which minimizes the dif-
ference between the desired signal d(i,j) and the weighted
filtered output values (p0 through pM-1). This step is in-
tended to determine which of the possible output le
results in the smallest effective error between the ac
output signal, and the desired output signal. The weig
filtered output value Pi corresponding to the selected ou
put value will be needed to compute the error sig
which will be distributed to future pixels. For clarity 
the figure, a second output filter processor is sho
which digitally filters the final output signal to compu
a weighted filtered output value p. However, it should
be noted that p is simply equal to the weighted filtere
output value Pi corresponding to the selected outp
value. Since this result has already been determine
should be unnecessary to recompute this value.
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The error signal is generated by computing the 
ference between the weighted filtered output value 
the desired signal d(i,j ). The error signal is then distrib
uted into N error buffers b0 through bN-1 by an error dis-
tributor that weights the error signal by the weight
vector Q,

bk(i, j) = qk{ d(i, j) – p}. (5)

The values stored in the N error buffers b0 through bN-1

are then processed by the weighted error generator and
added to the weighted filtered input values of pixels t
have not yet been processed, as described earlier.

As was the case for the visual error diffusion alg
rithm using input blur that was discussed in the last s
tion, it may be desirable to apply a sharpening pre-fi
to the input image in order to obtain a desirable leve
edge sharpness. If the sharpening is implemented in
form of a convolution, then it is possible to incorpor
the sharpening pre-filter directly into the input filterin
operation by convolving the sharpening pre-filter w
the filters F0(i,j ) through FN-1(i,j ) to arrive at a new se
of input filters. It may be desirable to only apply t
sharpening filter to portions of the image that cont
large amounts of image activity. This can be acco
plished by only incorporating the sharpening pre-fil
into a subset of the filters F0(i,j ) through FN-1(i,j ) that
correspond to large values of the activity signal.

A sample image generated using this adaptive
sual error diffusion method is shown in Fig. 16. The 
tivity function shown in Fig. 14 was used to switch b
tween image regions having high and low activity sig
values. The activity detector used in this example c
sisted of a local range detector. The set of pixels use
the local range detection operation was a 5× 5 pixel
neighborhood centered on the current pixel. In regi
of low activity, the input filter F0(i,j ) used was a delt
function δ(i,j ), where δ((i,j ) is defined as 1 for i = j = 0
and 0 otherwise. As a result, it can be seen that the i
filter operation reverts to a null operation and z(i,j ) is
equal to y(i,j ). The output filter used for low activity re
gions G0(i,j ) was the 8× 15 causal visual filter V(i,j )
shown in Fig. 6. In can be seen that this pair of input a
output filters simply corresponds to the conventio
visual error diffusion algorithm shown in Fig. 4. In th
case, it was found that there was no significant adv
tage to including the output visual blur filter since t
low activity regions of the image will generally not ha
a significant amount of high spatial frequency conte
In the high activity regions, the input filter F1(i,j ) used
was the sharpening filter shown in Fig. 11. The out
filter G1(i,j ) used was the delta function δ(i,j ). It can be
seen that this is equivalent to the conventional error
fusion algorithm of Fig. 1 where a pre-sharpening s
is applied.

From examination of Fig. 16, it can be seen that
image incorporates all of the benefits of the visual e
diffusion algorithm, without any of the undesirable ar
facts. The ghost pixels have been effectively elimina
the anisotropic edge sharpening has been replaced
well-controlled sharpening effect, and the noise pre
ously introduced in regions of high spatial frequen
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content has been eliminated. An additional advantag
this technique is that the algorithm can potentially
computationally faster due to the fact that the time-c
suming visual blur function only needs to be applied
flat image regions. Another example image genera
using this method is shown in Fig. 17.

Figure 16. Sample image generated using adaptive visua
ror diffusion algorithm.

Figure 17. Sample image generated using adaptive visua
ror diffusion algorithm.

5 Conclusions

Improved error diffusion algorithms have been descri
that produce digitally halftoned images having few
artifacts. In a first variation, a causal visual blur fu
tion is applied to both the input and output images 
ing the process of selecting the output value for the 
rent pixel. The error signal that is propagated to nea
pter II—Digital Halftoning and the Human Visual System—65
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unprocessed continuous-tone input pixels is determ
by computing the difference between the visually p
ceived input value and the visually perceived out
value. This approach has the advantage that it minim
the appearance of worm artifacts in the output ima
while eliminating the edge artifacts associated wit
previous visual error diffusion algorithm. However,
was shown that undesirable noise characteristics re
in image regions having high spatial frequency cont

A second variation of the algorithm was describ
that uses a local image activity detector to adaptiv
modify the input and output blur filters. This allows t
error diffusion algorithm to be optimized for differe
types of image content. The adaptive visual error di
sion approach incorporates all of the advantages o
other visual error diffusion algorithms, while simult
neously eliminating the objectionable artifacts. Exam
images were given to compare the various techniqu
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